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Current theoretical models for metal-nonmetal transitions are reviewed. Variational approaches 
to the half-filled band Hubbard model are discussed. Another electron-correlation model, the 
spinless Fermion model, is also discussed. Unlike the Hubbard model, the spinless Fermion 
model exhibits an insulator-metal transition in the one-dimensional ground state for nonzero 
interaction strength. A discussion of lattice-distortion models is given. In the distorted phase 
there are two types of spatial configurations for a magnetic singlet but only one (the polar singlet) 
forms at the expense of the intrasite repulsion energy. The role of soft phonons in a crystalline 
distortion is briefly discussed. 

I. Introduction 

There have been many developments in the 
last several years in the theories of metal- 
nonmetal (MNM) transitions. Since the 1968 
International Conference on the Metal- 
Nonmetal Transition (I) several articles 
(2-7) have appeared which have reviewed 
the state-of-the-art with respect to descriptions 
of MNM transitions of various types (e.g., 
Slater’s model of band antiferromagnetism 
(8), lattice distortion models, electron corre- 
lation models, etc.). In this paper I will attempt 
to present, rather than an updated systematic 
review of these topics, a discussion, as space 
permits, of certain aspects of recent theoretical 
developments related to mechanisms for 
MNM transitions. 

the underlying phenomenon that the model 
builder is attempting to describe. 

As is evidenced in nature and also in the 
simplest theoretical models, there are many 
ways in which the transport properties of a 
crystalline solid can be catastrophically 
altered. As a consequence, the theoretical 
study of MNM transitions is the study of many 
different models which reflect in each instance 

There are several ways of classifying MNM 
transitions. For example, they can be classified 
according to whether the gap in the one- 
electron density of states in the insulating 
state is due to crystal structure (the Fermi 
level occurs at the Brillouin zone edge) or 
whether it is due to an electron-correlation 
effect (e.g., the Mott-Hubbard (9, IO) gap). 
Note, however, that it is also possible to have a 
gap due to crystal structure, but a MNM 
transition that results from electron correlation 
e.g., the Falicov-Kimball model (II). It is also 
possible to have a gap in the one-electron 
density of states at the Fermi energy and not 
have an insulating state, e.g., the BCS mode1 
(12). Is it necessary to have a gap in the one- 
electron density of states in order to have an 
insulating state? 

* Work supported by the National Science Founda- 
tion, Grant No. HO40884. 

1 Invited paper. 
$ Present address : Brookhaven National Labora- 

tory, Upton, NY 11973. 

Another method of classifying MNM tran- 
sitions is according to whether there is some 
phase transition (in the thermodynamic sense) 
at which the transport properties are signifi- 
cantly changed. Is there an order parameter as- 
sociated with the Mott transition from a non- 
magnetic metal to a nonmagnetic insulator ? 

In addition to these classifications, one may 
wish to distinguish a MNM transition from a 
nonmetal-nonmetal transition. In this con- 
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nection one must give a definition of the term 
metal (13). 

In this paper we shall review theories of 
MNM transitions in terms of three models: 
the Hubbard model (ZO), the spinless Fermion 
model, and the lattice distortion model. 
For the Hubbard model we shall mainly 
discuss variational approaches to the MNM 
transition that have been developed in recent 
years. The spinless half-filled band Fermion 
model is the only nontrivial model that rigor- 
ously exhibits a MNM transition (24) (in the 
one dimensional ground state). It is interesting 
to compare this model with the Hubbard 
model. The model may also provide a reason- 
able basis for the description of some real 
materials. 

Lattice distortion models have received 
considerable recent attention in connection 
with a possible Peierls instability (15) in 
quasi one dimensional solids (16, 17). We 
shall relate this more recent work to earlier 
work done in connection with the transition- 
metal oxides and also discuss the role of a 
soft-phonon mode in this transition. 

II. The Hubbard Model 

The single-band Hubbard-Gutzwiller- 
Kanamori (9, 28, 19) model has been widely 
studied in connection with correlation effects 
in narrow-band solids. The model is 

where the notation is that of Ref. (13). 
The model has the distinct conceptual ad- 
vantage of being quantitatively simple in both 
the tij = 0 (Heitler-London) limit and U = 0 
(band) limit. This simplicity invites and chal- 
lenges theorists to interpolate between these 
limits and thereby study the competition 
between localized and itinerant electronic 
behavior. 

Perhaps one of the most significant results 
since the appearance of Ref. (I) is the exact 
solution for the one-dimensional ground-state 
energy. Lieb and Wu (20) found that under the 
assumption that the hopping parameter is 
restricted to nearest-neighbor sites on the 
linear chain, the one-dimensional Hubbard 
model is a Mott insulator for all U > 0. They 

based their conclusion on the fact that pL+ > 
p- for the half-filled band and noted that this 
property is characteristic of an insulator and 
not a conductor. Here p+ and ,K are the 
chemical potentials associated with adding 
and removing an electron from the half-filled 
band. Thus, the only exact result on the pos- 
sible MNM transition in the Hubbard model 
testifies against this possibility. As Lieb and 
Wu pointed out, the failure of obtaining a 
MNM transition as a function of U for U > 0 
in the ground state is not connected with the 
familiar taboos (21, 22) against phase trans- 
itions at finite temperature. As we shall see 
in the next section, it is possible to have a 
phase transition (as a function of a parameter) 
in a one-dimensional ground-state with short 
range interactions. The finite temperature 
theorems (21,22) do not extend to the ground 
state. 

There are several approximate treatments 
of the MNM transition in the higher-dimen- 
sional Hubbard model. Hubbard’s improved 
decoupling approximation (10) yielded the 
first description of MNM transition in the 
sense that beyond a critical value of U a gap 
opens in the pseudoparticle density of states. 
Hubbard employed an “alloy analogy” in 
making his approximation. (He assumed that 
the opposite-spin electrons were instantane- 
ously frozen into random configuration in 
considering the interaction between electrons.) 
It is now known (23) that this approximation is 
equivalent to the coherent potential approxim- 
ation (CPA) that was independently developed 
later in the theory of random alloys (24). 
Hubbard’s result is exact in both limits 
(tij = 0 and U= 0) but failed (25) to give 
a discontinuity in the single-particle mom- 
entum distribution function at the Fermi 
surface on the metallic side of the transition 
for finite U. 

While Hubbard’s approach was based on 
local concepts and perhaps treated the insu- 
lating side of the transition (26) better than the 
metallic side, Brinkman and Rice (27) 
studied the MNM transition in an approxima- 
tion that emphasized correlations on the 
metallic side of the transition but gave 
a naive description of the insulating side of 
the transition. Their approach is based on the 
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variational scheme of Gutzwiller (18, 28). 
Gutzwiller constructed a trial wave function 
that was based on the exact wave function for 
U = 0 (Bloch waves) but modified to distin- 
guish the doubly occupied (polar) states in the 
usual Bloch wave construction. This scheme 
builds in the Fermi surface at the outset and 
describes the metallic state in terms of a 
single-particle momentum distribution func- 
tion for which the discontinuity at the Fermi 
surface decreases with increasing U. Brinkman 
and Rice (27) applied Gutzwiller’s (28) 
approach to the MNM transition in the 
half-filled band and found a critical value of 
U for which ,the discontinuity vanished. 
They also argued that the effective mass 
should diverge at the critical value of U. 
In this sense the MNM transition could be 
described in terms of a plasmon mode in the 
metallic state that becomes soft as the transi- 
tion to the insulator is approached with 
increasing U. 

With regard to the theories of Hubbard (10) 
and Brinkman and Rice (27) we note the follow- 
ing. Both predict a MNM transition in the 
one-dimensional ground state in contradiction 
to the exact result of Lieb and Wu (20). 
Hubbard (10) originally used a parabolic 
density of noninteracting states model, but 
Shiba and Pincus (29) showed that the MNM 
transition persists even if one used the ap- 
propriate density of states to the one- 
dimensional cosine band. The result of 
Brinkman and Rice (27) only depends on the 
average kinetic energy of a half-filled Bloch 
band and makes no further distinction with 
regard to dimension. 

The MNM transition at finite temperature 
was studied in the context of a variational 
scheme (30) by Kaplan and Bari (31, 32). 
This variational scheme (referred to here as 
the TSDA (33)), like the standard thermal 
Hartree-Fock variational scheme, is based on 
trial wavefunctions that are single Slater 
determinants. In the Hartree-Fock scheme 
the “trial Hamiltonian” is of the form 

I?= 2 &L?ll 
A 

and the free energy 
F(p) = Tr P(H - pN) + kTTr p In p > FCXaCt 

is varied with respect to the one-electron 

energies, erl, and the one-electron occupation 
number n,. Here H is given by Eq. (1) and 
p is the density operator appropriate to E?. 
In the TSDA, I? is allowed to be an arbitrary 
function of the nl. This function and the 
single determinant wave functions are then 
varied to achieve stationarity of F(p). Unlike 
the Hartree-Fock approximation, the TSDA 
gives the physics correctly for both limits of 
the Hubbard model. The Hartree-Fock 
approximation fails to give the thermodyna- 
mics of the zero-bandwidth limit correctly 
(30,31). In fact it predicts a spurious second- 
order phase transition at kT = l/4 U. 

Kaplan and Bari (31, 32) considered the 
stability boundaries between various thermo- 
dynamic phases, including magnetic and 
paramagnetic insulating states, a magnetic 
semiconducting state and a paramagnetic 
metal. Although they were not able (due to 
calculational difficulties) to completely de- 
termine the phase diagram for all of the 
trial states that they considered, the phase 
boundaries that they did obtain are of inter- 
est in connection with mechanisms for MNM 
transitions. Of particular interest is the phase 
boundary between the paramagnetic metal 
and the paramagnetic insulator (32) since it 
highlights the role of entropy as the driving 
mechanism for a metal to nonmetal transition 
with increasing temperature. 

In Fig. 1, the phase boundary between 
these states is shown for (a) linear chain, 
(b) body-centered cubic, and (c) simple-cubic 
lattices. To the left of each boundary the phase 
is nonmetallic and to the right it is metallic. 
If, at T = O”K, the value of A/U is such that the 
energy of the metallic phase is slightly less 
than the insulating, it is seen from Fig. 1 
that a transition to the nonmetallic phase will 
occur upon increasing temperature. (Here the 
rms bandwidth, A, is defined by A2 = C 5;). 

This transition will be first order within the 
approximation scheme and occurs even in 
one dimension. It occurs even in the one- 
dimensional ground state, again in contra- 
diction to the exact result of Lieb and Wu 
(20). The transition is easily understood from 
the facts that (a) the zero-temperature entropy 
per particle for the nonmetallic state is kln2 
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FIG. 1. Phase boundary between localized and ex- 
tended states for (a) linear chain, (b) body-centered 
cubic, and (c) simple cubic. 

(this state is described by I?= U 2 nrt nil) 
i 

and for the metallic (Bloch) state it is zero, 
(b) the ground-state energy (per particle) 
difference EM(ecan - EN(onmetal) decreases with 
increasing bandwidth (34). Thus, at low 
temperature, the free energies (per particle) 
of the metal FM and nonmetal FN are given by 
FM = EM + 0 (T2) and FN = EN - kTln2, re- 
spectively. Hence, on the phase boundary 

aT/aA = -l/(k In 2) (a)/(aA) (EM - EN) > 0. 

Kaplan and Bari (32) noted that this prediction 
for the phase transition is in qualitative dis- 
agreement with one due to Mott (35). Mott 
considered a transition metal from a magnetic- 
ally ordered insulating state to a paramagnetic 
metal. In that case the entropy associated 
with the population of Bloch states (ccT) 
exceeds the low-temperature entropy associ- 
ated with the population of spin waves 
(a T3, in three dimensions) in the magnetic 
insulator. Consequently, Mott obtained a 
phase boundary with opposite slope at low 
temperature. 

We can compare the predictions of the 
various theories for the critical value of U/A 
for the paramagnetic MNM transition at zero 
temperature. In Table I we give the critical 
values of U/A for both the one and three- 
dimensional cases. The one-dimensional case 
is given for the simple cosine band for which 
the density of states is singular at the band 

TABLE I 
_- 

1 dimension 3-dimensions 

Hubbard 
Brinkman and Rice 
Kaplan and Bari 
Exact 

- 
3.46 3.39 
7.20 6.79 
3.62 3.46 

0 

edges. The three-dimensional case is given for 
the parabolic density of states used by Hubbard 
(10). We see that the prediction of Hubbard 
(10) and Kaplan and Bari (31,32) are in close 
agreement in both one and three dimensions 
but that the prediction of Brinkham and Rice 
(27) differs by roughly a factor of two in both 
cases. Is the exact value of the critical U/A 
nonzero in three dimensions? Better approxi- 
mation schemes would probably include 
magnetic correlations on both sides of the 
transition. In fact, in the scheme of Kaplan 
and Bari (3I), which reduces to the Hartree- 
Fock approximation at T= O”K, a lower 
variational solution is found for all U/A, 
which is just Slater’s (8) description of band 
antiferromagnetism. In one dimension, this 
solution will yield an insulating state for all 
U/A > 0 and the ground state energy is in 
good agreement (36) with the exact result of 
Lieb and Wu (20). 

Although it may not be relevant to oxides 
(for which U 2: 10eV) there has been discussion 
in recent years of a gradual metal-nonmetal 
transition (13, 29, 37, 38) in the narrow band 
regime (U 9 A) of the Hubbard model at 
kT2: l/4 U. This is of particular interest in 
connection with experimental studies (38) 
of organic charge transfer salts based on the 
molecule tetracyanoquinodimethan (TCNQ). 
In such organic solids, U E .l eV and there 
can be real thermal effects associated with this 
energy. 

Although the specific heat of the narrow- 
band Hubbard model exhibits a smooth 
maximum at kT N l/5 U, perhaps suggestive 
of a “gradual” phase transition, Bari and 
Kaplan (23) noted that it would be unreason- 
able to regard the high-temperature regime 
(kT Y l/3 U) as a metal since, among other 
reasons, kTB A (since U % A). In the high- 
temperature regime, the direct current is 
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carried by thermally induced doubly occupied 
sites and empty sites. They also noted that 
the fact that the temperature coefficient of the 
conductivity is negative (observed in most 
metals) was not. sufficient to conclude that the 
high-temperature phase is metallic. They 
pointed out that this property is also shared 
with an ordinary two-band intrinsic semi- 
conductor at temperatures comparable to the 
crystal structur#e energy gap. 

III. Thi Spinless Fermion Model 
In addition to being a model on which the 

MNM transition may be studied, the Hubbard 
model has occasioned much interest in the 
study of cooperative magnetic effects in 
itinerant-electron solids. This represents an 
additional richness and complication at the 
same time. A simpler model, devoid of spin, 
has been advocated by Kohn (39) for the 
purpose of studying just the MNM transition. 

In the spinless Fermion model, one imagines 
a lattice of Nnuclei, each with charge + e/2 and 
N/2 spinless electrons, each with charge -e. 
In the single-band model, only one electron 
is allowed on a site and in the absence of 
interactions the system is a half-filled band 
metal. Since there can be no intrasite inter- 
action, the shortest range interaction is among 
nearest neighbors. The model can be written 
as 

H = -t 1 ci+ cj + v 2 ni nj, (2) 
<i,j> <iA> 

where c,t creates a spinless Fermion on the 
ith site and ni - Cit Ci. The brackets denote that 
the summation is restricted to nearest- 
neighbor i and j and we have also taken the 
one-electron hoppingto be restricted to nearest 
neighbors as well. 

Although the model may appear to be 
somewhat unrealistic, Callen and Cullen (40) 
pointed out that it is actually not an unreason- 
able model for the study of the Verwey 
transition in Fe,O, (41). We see from Eq. (2), 
that in the limit t = 0, the ground state is just 
N/2 localized electrons segregated on one 
sublattice. Here it is assumed that the lattice 
can be divided into two sublattices such that 
all nearest-neighbor sites are on different 
sublattices. An ordering of this type can be 

taken to represent the Verwey ordering of 
Fez+ and Fe3+ ions. Sokoloff (42), in fact, 
originally described the Verwey transition 
(in a mean-field approximation) in terms of 
Eq. (2) with t = 0 by noting that the Hamil- 
tonian is then equivalent to a spin-3 Ising 
antiferromagnet. The transformation to spins 
is given by SI’ = nl+ 

Thus, unlike the Hubbard model, the 
spinless Fermion model can exhibit a phase 
transition (in two dimensions and higher), as 
a function of temperature, in the zero- 
bandwidth limit. Callen and Cullen (40) 
studied Eq. (2) in the (broken symmetry) 
Hartree-Fock approximation and found an 
insulating ground state described in terms of a 
charge-density-wave. In the one-dimensional 
model, they found that the ground state is 
insulating for all V/t > 0. 

In one dimension, Eq. (2) has a very inter- 
esting feature. In addition to the fact that the 
interaction term can be simply represented by 
an Ising Hamiltonian, the hopping term (in 
one dimension and with nearest-neighbor 
coupling) can be represented by the spin-4 
XY model (43). As a consequence Eq. (2) 
is equivalent (in one dimension only) to the 
anisotropic Heisenberg-Ising model. Apart 
from an additive constant, Eq. (2) is given 
by 

H= Jl 2 (SixSf+l + s~‘sY+~) 

+h 2 st G+I + J,, 1 si*. (3) z 1 

Here JI z 2t and J,, = 2V. The last term in 
Eq. (3), which represents a uniform magnetic 
field in the z direction of spin, is apart from an 
additive constant, the chemical potential 
times the total number operator &N) for the 
half-filled band. 

In the context of the Heisenberg-Ising 
model the ground state energy and low-lying 
excitations of H-pN have been exactly de- 
termined (44). The interesting results are the 
following. For J,, > JI there is a gap in the 
excitation spectrum which vanishes as J,, --f JI. 
Des Cloizeaux noted (24) that in terms of the 
spinless Fermion representation, this is a 
gap in the one-electron excitation spectrum 
and represents an insulator to metal transition 
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at t = V. Thus, the ground state of the one- 
dimensional spinless Fermion Hamiltonian 
is the only nontrivial model that rigorously 
exhibits a MNM transition! Des Cloizeaux 
(14) also noted that since the ground state 
energy is an analytic function of V/t on either 
side of the transition, perturbation theory is 
valid. He also explicitly verified the validity 
of the Landau theory of the Fermi liquid on 
the metallic side of the transition. It is also 
interesting to note that the Hartree-Fock 
charge-density-wave description of Eq. (2) 
yields a ground state energy that is in good 
quantitative agreement (14) with the exact 
result for all V/t; however, there is a qualitative 
disagreement for V/t < 1 because the (lowest 
energy) Hartree-Fock solution predicts in- 
sulating behavior in that regime. In compari- 
son, the spin-density-wave Hartree-Fock 
description of the half-filled band Hubbard 
model appears to give both qualitative and 
quantitative agreement (36) with the exact 
result (20) for all U/t. 

In summary, the spinless Fermion model is a 
system, not unrelated to real materials (45), 
for which it is known that a MNM transition 
exists. Consequently, it provides a starting 
point for further understanding of MNM 
transitions due to electron correlation. 

IV. Lattice Distortion Models 

Peierls (15) showed that a one-dimensional 
band would be unstable to a distortion that 
increases the size of the unit cell when an 
(arbitrarily weak) electron-phonon interaction 
is taken into account. He argued that this 
system would be an insulator because the 
occupied one-electron states would be split 
off from the unoccupied states because of the 
introduction of a gap in the one-electron 
energy spectrum due to the electron-phonon 
perturbation. He predicted that the fractional 
reduction of the Brillouin zone would corre- 
spond to the fractional filling of the energy 
band, e.g., the Brillouin zone would be 
halved for an originally half-filled band. 

Although he had intended it to be an explan- 
ation of the as then yet not understood 
phenomenon of superconductivity, Frohlich 
(46) gave a quite detailed microscopic de- 

scription of the instability that Peierls (25) 
had in mind. Frohlich started from the 
Hamiltonian 

H = Ho + 1 g&q + 4’) Ck=q ck, 
q.k 

(4) 

where Ho is the one-electron band Hamiltonian 
plus the free-phonon Hamiltonian. g, is the 
electron-phonon coupling constant and a, 
destroys a phonon with wavevector q and c, 
destroys an electron with wavevector k. We 
have suppressed the spin index for brevity. 
Frohlich singled out the phonon mode that 
corresponds to q = 2k,, twice the Fermi 
wavevector, and treated it as a macroscopic 
parameter (cc (N)*). This led, through the 
electron-phonon interaction to the mixing 
of degenerate states across the Fermi surface 
and a consequent splitting of this degeneracy 
in the reduced zone scheme. For the half- 
filled band 2kF corresponds to the zone- 
boundary phonon and the crystallographic 
distortion can be described in terms of a 
macroscopic occupation of the zone-boundary 
phonon mode. This theory was extended to 
finite temperature by Kuper (47), who showed 
that the distortion (and electronic energy gap) 
vanishes at a second-order, mean-field transi- 
tion temperature. 

In order to explain the insulating behavior 
of certain transition-metal oxides, Good- 
enough (48) proposed a covalent-type bond 
formation between cation pairs. He noted that 
cation pair cluster formation introduced the 
required changes in the translation symmetry 
ofthecrystalandthespinpairingofthetrapped 
bonding electrons gave rise to a magnetic 
singlet state. Subsequently, Goodenough (49) 
gave a more quantitative description of this 
state starting from the one-dimensional 
band model. 

Adler and Brooks (SO) started from the 
one-dimensional Kronig-Penney model and 
showed that a lattice distortion that doubled 
the unit cell could give rise to an insulating 
state provided the gain in electronic energy 
exceeded the loss of elastic energy upon such 
a distortion and they found this to be most 
favorable in very narrow bands. They ex- 
amined the thermodynamics of the crystallo- 
graphic phase transition in detail and con- 
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eluded, under the assumption that the energy 
subbands (of the lower symmetry phase) 
were spherical around the valence and con- 
duction band edges, that the phase transition 
would be of first order. On the other hand, 
Mattis and Langer (52), starting from a 
description similar to that of Refs. (46) and 
(47), found that the transition would be second 
order for the simple-cubic and body-centered- 
cubic tight binding band structures. They also 
discussed how the order of the transition would 
be changed (to first order) as a result of devia- 
tions from the above band structures. 

The role of electron-electron interactions 
in a crystalline distortion that involves a 
splitting of the electronic energy band was 
considered by Zinamon and Mott (7) and 
also by Goodenough (5). These authors 
suggested that in the presence of Hubbard’s 
(9) intrasite electron-electron repulsion, a 
distorted phase would not occur if U were 
sufficiently large compared to the band (bond- 
ing-antibonding) splitting that is induced 
by the crystalline distortion. The distorted 
state would be quenched and the system would 
be a Mott insulator with electrons localized 
one per site. On the other hand Rice, McWhan, 
and Brinkman (52) argued that the distorted 
phase would compete favorably with the Mott 
insulator even for very large values of U. 
Their reasoning is based on the fact that 
lowering of energy due to correlations in a 
bonded (singlet) pair has the same origin as 
the antiferromagnetic exchange splitting in the 
Mott insulator. Furthermore, the distortion 
of the bonded pair would lead, since the 
lowering of electronic energy is linear in the 
distortion and the raising of elastic energy is 
quadratic in the distortion, to the possibility 
of the distorted phase being preferred over 
the Mott insulator. 

We also note that Bari (53) constructed a 
lattice-distortion model, in which the Bloch 
energy term in Eq. (4) is replaced by the inter- 
action term of the Hubbard model. He also 
included the nearest-neighbor intersite Cou- 
lomb integral as well. Bari found that a dis- 
torted phase could occur and that the phase 
(semiconductor-to-semiconductor) transition 
to the undistorted (Mott insulator) phase 
could be first or second order, depending on 

the parameters. The distorted phase was 
obtained only for values of U less than a 
critical value. This quenching of the distorted 
state is consistent with the arguments presented 
by Zinamon and Mott (7) and Goodenough 
(5). It is interesting to note however that the 
structure of the distorted state (at zero band- 
width) is that of N/2 doubly occupied sites 
on one sublattice. Thus, although this state 
forms a spin singlet it is not of the same struc- 
ture of the bonded state discussed in Refs. 
(48) and (52). In order to illustrate the differ- 
ence, consider a two-site two-electron model 
with zero bandwidth. The states 

and 

are both singlets in the sense that they are 
eigenstates of s2 (total) and of sz (total) with 
eigenvalue zero in each case. State Ia> is the 
limiting form, as tiJ -+ 0, of the bonding state 
discussed by Goodenough (5) (it is also, within 
the single band, the limiting form of the ground 
state wave function of the H2 molecule). 
State lb>, although also a singlet state, 
is a polar state and requires an energy U for 
formation. In terms of these states, then, it is 
clear why Bari’s (53) charge-ordered-state 
must form at the expense of U; however, it is 
less clear why, if Zinamon and Mott (7~ 
and Goodenough (5) are describing a single 
state based on ]a>, the criteria suggested by 
them should apply. 

The charge-ordered-state discussed by Bari 
(53) is a consequence of the assumed form of 
the electron-phonon interaction. Bari started 
with the interaction given by Eq. (4); in 
Wannier-site representation this can be re- 
written as 

Hi,, = 2 g,(U, + a,+) e*@i ni* 
4.1 

(5) 

If the zone boundary mode is singled out, then 
Eq. (5) represents an external staggered 
potential (in the linear chain take q = n/u) 
with spatial dependence exp{inRJu}. This 
potential will favor segregation of electrons 
onto one sublattice (at the expense of U); 
Mitra (55) and Barisic (56) have discussed the 
form of the electron-phonon interaction 
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in the narrow-band regime. They argued that 
in addition to Eq. (5), a site nondiagonal (in 
electron operators) term would arise from the 
modulation of the one-electron hopping 
integrals in a vibrating lattice. These terms 
should be taken into account in order to 
obtain the description of the nonpolar singlet. 

Finally, we consider the role of a soft 
phonon in a crystalline distortion involving 
the rearrangement of electronic energy states. 
In the weak-coupling regime, the renormaliza- 
tion of the phonon frequencies due to the 
coupling to electrons is given by (57) 

Here Sz, and o, are the unrenormalized and 
renormalized phonon frequencies, respec- 
tively, and x(q,o,) is the density response 
function (57) of the electron system. For 
tight-binding band structures such that 
a(k) = -s(k + Q) for some Q and all k, the 
response function for wavevector Q becomes 
large and negative as T decreases from high 
temperatures. If at some temperature, T,, the 
second term in Eq. (6) exactly cancels the first 
term the renormalized phonon mode of 
wavevector Q softens to zero, and the lattice 
structure becomes unstable. 

This description of softening of the phonon 
in the higher. temperature phase is based on 
the time-dependent Hartree-Fock approxima- 
tion. The description of the distorted phase in 
the mean field (Hartree-Fock) approximation 
(46, 47) is then the stable Hartree-Fock 
solution below T,. Thus, within the Hartree- 
Fock approximation the phonon softening 
in the high-temperature phase and the de- 
scription of the distorted low-temperature 
phase are two aspects of the generalized 
Hartree-Fock description of an instability. 

Although the dynamical softening of a 
lattice mode would certainly favor an inst- 
ability of the lattice, it is not a necessary con- 
dition for achieving a distorted phase. In the 
zero-bandwith case, the distorted phase can 
be achieved without any dynamical softening 
of the phonon modes at all. As can be seen 
from the description given by Bari (.53), 
the displaced oscillator transformation does 
not effect phonon frequencies, and the phase 
transition is achieved as a result of the lowering 

of one-electron energy against the raising 
of elastic energy required for the distortion. 
Of course if the elastic constant becomes 
smaller this will certainly favor the transition, 
but this need not be a necessary condition for 
the transition to occur. 

V. Remarks 

We have reviewed some mechanisms for 
MNM transitions in the oxides. We offer 
an apology in advance for any work that was 
inadvertently missed in connection with the 
topics discussed. 

We have not discussed polaronic effects at 
all; hopefully a review will be given by Emin 
(58) in these Proceedings. Zinamon and Mott 
(7) have emphasized the concept of strong 
correlations on the “metallic” side of the 
MNM transition and have stressed the impor- 
tance of small polaron effects in some 
materials. Brinkman and Rice (27) were the 
first to emphasize strong correlations due 
to the electron-electron interaction in the 
metallic regime. 

There has been much interest recently in the 
Peierls transition in pseudo-one-dimensional 
solids (26,27). We also note the recent neutron 
scattering work on NbOz (59) in which a soft 
excitation has been observed from above the 
transition (in the rutile phase) to the distorted 
structure in which niobium ions pair along the 
c-axis. 

In regard to model analysis, we have shown 
that for each model considered here, particular 
care must be taken in applying Hartree-Fock 
or mean theory to the models themselves, 
especially when the interactions are short- 
ranged (23, 14,60). 
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